
© 2021. Grayshift, LLC. All rights reserved.

Bernard Lampe, Ph.D.

Android Vulnerability Researcher and Manager

October 28, 2021

Analysis and Exploitation of CVE-

2021-28664 for Android

Privilege Escalation

© 2021. Grayshift, LLC. All rights reserved.

Who am I

• Professional Vulnerability Researcher

• Joined Grayshift May 2020

• Android Vulnerability Manager

• Work at home

• Vulnerability Research Contractor for 10 years

• Browsers, Embedded Devices, Linux, Android

• Work in SCIF life

• Academic Researcher Electrical Engineering

• Hyperspectral and Compressive Sensing

© 2021. Grayshift, LLC. All rights reserved.

• ACCESS LAWFULLY.

• DISCOVER SWIFTLY.

• PROTECT JUSTLY.

• Grayshift has developed GrayKey, a state-of-

the-art mobile forensic access tool, that

extracts encrypted or inaccessible data from

mobile devices.

• Android coverage growing each release

© 2021. Grayshift, LLC. All rights reserved.

Vulnerability Researchers at Grayshift

• Our team of vulnerability researchers is dedicated to building innovative

technology to gain “device access.”

• Develop N-day and researching novel 0-day

• Initial Access

• Elevating Privileges

• Cryptoanalysis

• Goal is forensic data extraction and to preserve chain of custody of data

© 2021. Grayshift, LLC. All rights reserved.

Bug chains

• IA + Priv + Cryptoanalysis represents defense in depth

• Address each problem separately or break into subproblems

• Chain capabilities together to get data extraction

• Don’t crash, reset, or modify the phone

• Today’s talk focus on privesc on the application processor (AP)
• Linux version linux-4.19.135-mali, arm64, and mali version v_r20p0.

• Only taking you on part of the exploit chain journey today

© 2021. Grayshift, LLC. All rights reserved.

Privesc Attack Surfaces
• Go from low to high privs, but what is in our way?

• Linux process isolation and memory isolation

• Linux process and file privileges
• Linux file and process permissions, Linux capabilities

• SELinux: u:r:untrusted_app:s0, u:r:isolated_app:s0, u:r:shell:s0, u:r:vendor_shell:s0, many many more…

• SECCOMP syscall filtering

• Vendor specific protections, RKP, DEFEX, TIMA, etc, etc

• Starting context in peripheral device
• USB, Modem, Bluetooth, NFC

• IOMMUs enforce virtual memory isolation

• Execution isolation achieved by being on a separate piece of hardware

© 2021. Grayshift, LLC. All rights reserved.

ARM AP Exception Levels

https://developer.arm.com/documentation/102412/0100/Execution-and-Security-states

© 2021. Grayshift, LLC. All rights reserved.

Background System Concepts

© 2021. Grayshift, LLC. All rights reserved.

Syscall Absolute Minimum

asm{
mov x8, __NR_ioctl,
svc #0

};

// Exception vectors.
ENTRY(vectors)
<snip>

kernel_ventry 0, sync // Synchronous 64-bit EL0
kernel_ventry 0, irq // IRQ 64-bit EL0
kernel_ventry 0, fiq_invalid // FIQ 64-bit EL0
kernel_ventry 0, error // Error 64-bit EL0

<snip>
END(vectors)

arch/arm64/kernel/head.S

adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb

arch/arm64/kernel/entry.S: el0_sync()
arch/arm64/kernel/entry.S:el0_svc()

arch/arm64/kernel/syscall.c:el0_svc_handler(struct pt_regs *regs)
arch/arm64/kernel/syscall.c:el0_svc_common(struct pt_regs *regs, …)

arch/arm64/kernel/syscall.c:invoke_syscall(struct pt_regs *regs, …)
arch/arm64/kernel/syscall.c:__invoke_syscall(struct pt_regs *regs, …)

On boot setup VBAR_EL1
During EL0 exec

• Syscalls are a way to call kernel functions from userspace securely to enforce process isolation

© 2021. Grayshift, LLC. All rights reserved.

Page Fault Absolute Minimum

arch/arm64/kernel/entry.S: el0_sync()
arch/arm64/kernel/entry.S:el0_da()

arch/arm64/mm/fault.c:do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
arch/arm64/mm/fault.c:do_translation_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs)

arch/arm64/mm/fault.c:do_page_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs)
arch/arm64/mm/fault.c:__do_page_fault(struct mm_struct *mm, unsigned long addr, ...)

handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags)
__handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags)
handle_pte_fault(struct vm_fault *vmf)

do_anonymous_page(struct vm_fault *vmf)
do_fault(struct vm_fault *vmf)

do_shared_fault()
__do_fault(struct vm_fault *vmf)

vma->vm_ops->fault(vmf)

• Virtual memory is a way to isolate process memory from each other
• Kernel tracks memory regions by struct vma_area_struct *vma
• When you see vma, think kernel record and vm_ops for faulting

© 2021. Grayshift, LLC. All rights reserved.

struct vm_area_struct
{

unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address within vm_mm. */

<snip>
const struct vm_operations_struct *vm_ops;

<snip>
pgprot_t vm_page_prot; /* Access permissions of pte's assigned to this VMA. */
unsigned long vm_flags; /* Arch independent flags such as VM_READ, VM_WRITE
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE units */
struct file * vm_file; /* File we map to (can be NULL). */

<snip>
}

• Kernels keeps lists of virtual memory areas that are mapped in your processes
• Keep access permission in flags fields
• Keep vm_ops function pointers around to populate memory when needed

Kernel Record of VMA

© 2021. Grayshift, LLC. All rights reserved.

// mali kbase_va_region struct from mali_kbase_mem.h
struct kbase_va_region {
<snip>

u64 start_pfn; /* The PFN in GPU space */
size_t nr_pages;

<snip>

unsigned long flags;

<snip>

struct kbase_mem_phy_alloc *cpu_alloc; /* the one alloc object we mmap to the CPU when mapping this region */
struct kbase_mem_phy_alloc *gpu_alloc; /* the one alloc object we mmap to the GPU when mapping this region */

<snip>

int va_refcnt; /* number of users of this va */
};

• Mali driver keeps lists of virtual memory areas that are imported
• Keeps separate access permission in flags fields

Driver Record of VMA called kbase_va_region

© 2021. Grayshift, LLC. All rights reserved.

/**
* A CPU mapping
*/
struct kbase_cpu_mapping {

struct list_head mappings_list;
struct kbase_mem_phy_alloc

*alloc;
struct kbase_context *kctx;
struct kbase_va_region *region;
int count;
int free_on_close;

};

• Used when a GPU maps things back out
• Does not keep access permission flags
• Physical mappings keep track of pages and associated userspace virtual memory addresses

Driver Record of VMA Mapping

/**
* A physical mapping
*/

struct kbase_mem_phy_alloc {
union {

<snip>
struct

kbase_alloc_import_user_buf {
unsigned long address;
unsigned long size;
unsigned long nr_pages;
struct page **pages;

<snip>
dma_addr_t *dma_addrs;

} user_buf;
} imported;

};

© 2021. Grayshift, LLC. All rights reserved.

Summary of Prerequisite Knowledge
• Userspace programs running at EL0

• Kernel and driver running at EL1

• Programs at EL0 talk to the kernel in EL1 using exceptions (syscalls and page faults)

• vm_area_structs (vmas) are how kernel keeps track of userspace program memory

• kbase_va_region are how the driver keeps track of userspace memory imported

• kbase_cpu_mapping are how the driver keeps track of userspace memory mappings

• kbase_mem_phy_alloc are how driver keeps track of physical pages

• Foreshadowing: There’s a lot of separate bookkeepers of the userspace memory

I hope they all do accounting consistently

© 2021. Grayshift, LLC. All rights reserved.

Why GPU Vulnerabilities? – Ben Hawkes
• “From an attacker’s perspective, maintaining an Android exploit capability is a

question of covering the widest possible range of Android ecosystem in the

most cost-effective way possible.”

• “[…] there are only two implementations of GPU hardware that are particularly

popular in Android devices: ARM Mali and Qualcomm Adreno.”

• “This means that if an attacker can find a nicely exploitable bug in these two

GPU implementations, […]”

• “[…] GPU are highly complex with significant amount of closed-source

components […]”

© 2021. Grayshift, LLC. All rights reserved.

Why GPU Vulnerabilities?

• Android kernels (and vendors) deploy exploit mitigations in layers

• SEAndroid, SECCOMP, DEFEX, RKP, TIMA, etc

• GPUs are complicated attack surface

• Many fops and vm_ops {open, ioctl, mmap, etc}

• Shared memory is hard to get right

• DAC and MAC make it accessible from u:r:untrusted_app:s0, and u:r:shell:s0

• Kernel drivers historically poor code quality

© 2021. Grayshift, LLC. All rights reserved.

Other GPU Vulnerabilities – Background Research

• Ben Hawkes, Project Zero, Qualcomm Adreno GPU memory mapping use-after-free

• CVE-2021-1905, UAF of struct could lead to freeing used pages
• https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-1905.html

• Ben Hawkes, Project Zero, Attacking the Qualcomm Adreno GPU

• CVE-2020-11179, Global memory mapping tricks GPU again, allowing kernel r/w
• https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html

• Guang Gong, An Exploit Chain to Remotely Root Modern Android Devices

• CVE-2019-10567, Global memory mapping corrupts GPU, allowing kernel r/w
• https://i.blackhat.com/USA-20/Thursday/us-20-Gong-TiYunZong-An-Exploit-Chain-To-Remotely-Root-Modern-Android-Devices-wp.pdf

• Justin Taft, NCC Group, GPU Security Exposed

• CVE-2016-2067, Access flag logic error allow userspace ro pages r/w
• https://www.blackhat.com/docs/eu-16/materials/eu-16-Taft-GPU-Security-Exposed.pdf

© 2021. Grayshift, LLC. All rights reserved.

Tracking 0-day “In the Wild”

https://googleprojectzero.blogspot.com/p/0day.html

https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit#gid=2129022708

© 2021. Grayshift, LLC. All rights reserved.

Google Android Security Bulletin

https://source.android.com/security/bulletin/2021-05-01

© 2021. Grayshift, LLC. All rights reserved.

GPU Bugs in the Press

https://www.zdnet.com/article/google-warns-these-four-android-flaws-are-now-under-attack/

https://twitter.com/maddiestone/status/1395004346996248586?s=20

© 2021. Grayshift, LLC. All rights reserved.

ARM Vuln Report CVE-2021-28664

https://developer.arm.com/support/arm-security-updates/mali-gpu-kernel-driver

© 2021. Grayshift, LLC. All rights reserved.

Mali GPU Source Code

• Utgard, Miggard, Bifrost GPU Versions and Drivers

https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/bifrost-kernel

© 2021. Grayshift, LLC. All rights reserved.

Mali GPU Source Patch Diff
mali_kbase_mem_linux.c:

© 2021. Grayshift, LLC. All rights reserved.

Mali GPU Source Patch Diff
mali_kbase_mem_linux.c: struct kbase_va_region * kbase_mem_from_user_buffer(kctx, address, size, *va_pages, *flags)

down_read(kbase_mem_get_process_mmap_lock());

#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0)
faulted_pages = get_user_pages(current, current-

>mm, address, *va_pages,
#if KERNEL_VERSION(4, 4, 168) <= LINUX_VERSION_CODE && \
KERNEL_VERSION(4, 5, 0) > LINUX_VERSION_CODE

reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
pages, NULL);

#else
reg->flags & KBASE_REG_GPU_WR, 0, pages, NULL);

#endif
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)

faulted_pages = get_user_pages(address, *va_pages,
reg->flags & KBASE_REG_GPU_WR, 0, pages, NULL);

#else
faulted_pages = get_user_pages(address, *va_pages,

reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
pages, NULL);

#endif

up_read(kbase_mem_get_process_mmap_lock());

down_read(kbase_mem_get_process_mmap_lock());

write = reg->flags & (KBASE_REG_CPU_WR | KBASE_REG_GPU_WR);

#if KERNEL_VERSION(4, 6, 0) > LINUX_VERSION_CODE
faulted_pages = get_user_pages(current, current->mm,

address, *va_pages,
#if KERNEL_VERSION(4, 4, 168) <= LINUX_VERSION_CODE && \
KERNEL_VERSION(4, 5, 0) > LINUX_VERSION_CODE

write ? FOLL_WRITE : 0, pages, NULL);
#else

write, 0, pages, NULL);
#endif
#elif KERNEL_VERSION(4, 9, 0) > LINUX_VERSION_CODE

faulted_pages = get_user_pages(address, *va_pages,
write, 0, pages, NULL);

#else
faulted_pages = get_user_pages(address, *va_pages,

write ? FOLL_WRITE : 0, pages, NULL);
#endif

up_read(kbase_mem_get_process_mmap_lock());

BX304L01B-SW-99002-r28p0-01eac0-android BX304L01B-SW-99002-r31p0-01eac0

© 2021. Grayshift, LLC. All rights reserved.

Mali GPU Source Patch Diff
mali_kbase_mem_linux.c: struct kbase_va_region * kbase_mem_from_user_buffer(kctx, address, size, *va_pages, *flags)

down_read(kbase_mem_get_process_mmap_lock());

faulted_pages = get_user_pages(address, *va_pages,
reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
pages, NULL);

up_read(kbase_mem_get_process_mmap_lock());

down_read(kbase_mem_get_process_mmap_lock());

write = reg->flags & (KBASE_REG_CPU_WR | KBASE_REG_GPU_WR);

faulted_pages = get_user_pages(address, *va_pages,
write ? FOLL_WRITE : 0, pages, NULL);

up_read(kbase_mem_get_process_mmap_lock());

BX304L01B-SW-99002-r28p0-01eac0-android BX304L01B-SW-99002-r31p0-01eac0

/**
* get_user_pages() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
*.
*/
long get_user_pages(unsigned long start, unsigned long nr_pages,

unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas)

© 2021. Grayshift, LLC. All rights reserved.

get_user_pages()

• “get_...” typically means to take a reference to mark a user and prevent free

• Looking up kernel docs on GUP:
• get_user_pages walks a process's page tables and takes a reference to each struct

page that each user address corresponds to at a given instant.

• If write = 0, the page must not be written to.

• The write flag will check the page protections if set. Will not check if the page
protections if not set.

© 2021. Grayshift, LLC. All rights reserved.

Implications of the Patch
• What is the purpose of encapsulating call?

• Create a kbase_va_region tracking userspace memory
• Copy in address, size and permission flags
• Return the region and store it for later and give

back a cookie for mmap

/* return a cookie */
kctx->pending_regions[*gpu_va] = reg; <-- puts the region into array

int kbase_update_region_flags(
struct kbase_context *kctx,
struct kbase_va_region *reg,
unsigned long flags)

{
<snip>

if (flags & BASE_MEM_PROT_CPU_WR)
reg->flags |= KBASE_REG_CPU_WR;

if (flags & BASE_MEM_PROT_CPU_RD)
reg->flags |= KBASE_REG_CPU_RD;

if (flags & BASE_MEM_PROT_GPU_WR)
reg->flags |= KBASE_REG_GPU_WR;

if (flags & BASE_MEM_PROT_GPU_RD)
reg->flags |= KBASE_REG_GPU_RD;

<snip>
}

static struct kbase_va_region *kbase_mem_from_user_buffer(
struct kbase_context *kctx, unsigned long address,
unsigned long size, u64 *va_pages, u64 *flags)

© 2021. Grayshift, LLC. All rights reserved.

Implications of the Patch

• Sanity check is supposed to check if the pages have the right access

permissions

• Developer assumption is that the write=0 flag enforces a RO check

• In reality it just skips the check all together

• Therefore:

• Attacker sends memory import flags to cause KBASE_REG_GPU_WR unset

and KBASE_REG_CPU_WR set when copying to new region struct

• The CPU write is recorded in the region, but not validated

© 2021. Grayshift, LLC. All rights reserved.

Call Trace to Patched Code – Calls and Args
drivers/gpu/arm/v_r20p0/mali_kbase_core_linux.c:kbase_ioctl(struct file *filp,

unsigned int cmd,
unsigned long arg)

drivers/gpu/arm/v_r20p0/mali_kbase_core_linux.c:kbase_api_mem_import(struct kbase_context *kctx,
union kbase_ioctl_mem_import *import)

drivers/gpu/arm/v_r20p0/mali_kbase_mem_linux.c:kbase_mem_import(struct kbase_context *kctx,
enum base_mem_import_type type,
void __user *phandle,
u32 padding,
u64 *gpu_va,
u64 *va_pages,
u64 *flags)

drivers/gpu/arm/v_r20p0/mali_kbase_mem_linux.c:kbase_mem_from_user_buffer(struct kbase_context *kctx,
unsigned long address,
unsigned long size,
u64 *va_pages,
u64 *flags)

© 2021. Grayshift, LLC. All rights reserved.
12/7/2021

Where are we going?

Can you hold this memory

for me kernel driver? Oh

and it’s read-write, trust

me

Can I have some read only

memory mapped?

Sure thing, and I’ll cache it

for you

Sure thing, looks like this

is read-write memory to

me

Remember that memory I

gave you, can you make a

read-write mapping for me?

Sure thing, here you go

kbase_va_region

{R/W}

kbase_cpu_mapping

{R/W}

vm_area_struct {RO}

Kernel DriverAttacker

Go ask that device to

DMA write for me,

thanks

© 2021. Grayshift, LLC. All rights reserved.
12/7/2021

Where are we going?

Can you hold this memory

for me kernel driver? Oh

and it’s read-write, trust

me

Can I have some read only

memory mapped?

Sure thing, and I’ll cache it

for you

Sure thing, looks like this

is read-write memory to

me

Remember that memory I

gave you, can you make a

read-write mapping for me?

Sure thing, here you go

kbase_va_region

{R/W}

kbase_cpu_mapping

{R/W}

vm_area_struct {RO}

Kernel DriverAttacker

Go ask that device to

DMA write for me,

thanks

© 2021. Grayshift, LLC. All rights reserved.
12/7/2021

Where are we going?

Can you hold this memory

for me kernel driver? Oh

and it’s read-write, trust

me

Can I have some read only

memory mapped?

Sure thing, and I’ll cache it

for you

Sure thing, looks like this

is read-write memory to

me

Remember that memory I

gave you, can you make a

read-write mapping for me?

Sure thing, here you go

kbase_va_region

{R/W}

kbase_cpu_mapping

{R/W}

vm_area_struct {RO}

Kernel DriverAttacker

Go ask that device to

DMA write for me,

thanks

© 2021. Grayshift, LLC. All rights reserved.
12/7/2021

Where are we going?

Can you hold this memory

for me kernel driver? Oh

and it’s read-write, trust

me

Can I have some read only

memory mapped?

Sure thing, and I’ll cache it

for you

Sure thing, looks like this

is read-write memory to

me

Remember that memory?

Can you make a DMA read-

write mapping for me?

Sure thing, here you go

kbase_va_region

{R/W}

kbase_cpu_mapping

{R/W}

vm_area_struct {RO}

Kernel DriverAttacker

Go ask that device to

DMA write for me,

thanks

© 2021. Grayshift, LLC. All rights reserved.

Primitive Userspace Calls

© 2021. Grayshift, LLC. All rights reserved.

NoMali
• ARM has a hardware emulator
• Some ARM researchers profiled the driver without hardware

and released the nomali simulator code for GEM5
• https://github.com/ARM-software/nomali-model
• https://ieeexplore.ieee.org/document/7482100

© 2021. Grayshift, LLC. All rights reserved.

NoMali – Xmind Map Code

• text

© 2021. Grayshift, LLC. All rights reserved.

NoMali – Xmind Map Code

• text

© 2021. Grayshift, LLC. All rights reserved.

NoMali – Xmind Map Code

© 2021. Grayshift, LLC. All rights reserved.

NoMali – Xmind Map Code

© 2021. Grayshift, LLC. All rights reserved.

Emulator
• Import driver code into Linux source build system
• Hack up the PMIC code, temperature sensor code, and

hardcode NoMali initialization in the driver

© 2021. Grayshift, LLC. All rights reserved.

How to talk to the GPU? - userspace

© 2021. Grayshift, LLC. All rights reserved.

How to talk to the GPU? – driver entry

// drivers/gpu/arm/v_r20p0/mali_kbase_core_linux.c
static const struct file_operations kbase_fops = {

.owner = THIS_MODULE,

.open = kbase_open,

.release = kbase_release,

.read = kbase_read,

.poll = kbase_poll,

.unlocked_ioctl = kbase_ioctl,

.compat_ioctl = kbase_ioctl,

.mmap = kbase_mmap,

.check_flags = kbase_check_flags,

.get_unmapped_area = kbase_get_unmapped_area,
};

© 2021. Grayshift, LLC. All rights reserved.

How to talk to the GPU? – kernel space

© 2021. Grayshift, LLC. All rights reserved.

Importing VMA to GPU - userspace

© 2021. Grayshift, LLC. All rights reserved.

Importing VMA to GPU – kernel space

© 2021. Grayshift, LLC. All rights reserved.
12/7/2021

Importing VMA to GPU – kernel space

© 2021. Grayshift, LLC. All rights reserved.

Exporting Region out of GPU - userspace

© 2021. Grayshift, LLC. All rights reserved.

Exporting Region out of GPU – kernel space

© 2021. Grayshift, LLC. All rights reserved.

Submitting a Job to Pin Pages

int kbase_jd_user_buf_pin_pages(struct kbase_context *kctx,
struct kbase_va_region *reg)

{
struct kbase_mem_phy_alloc *alloc = reg->gpu_alloc;
struct page **pages = alloc->imported.user_buf.pages;
unsigned long address = alloc->imported.user_buf.address;
struct mm_struct *mm = alloc->imported.user_buf.mm;
long pinned_pages;
long i;

<snip>
pinned_pages = get_user_pages(NULL, mm,

address,
alloc->imported.user_buf.nr_pages,
reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 0,
pages, NULL, NULL);

<snip>
if (pinned_pages <= 0)

return pinned_pages;
<snip>

alloc->nents = pinned_pages;
}

static int kbase_jd_user_buf_map(struct kbase_context *kctx,
struct kbase_va_region *reg)

{
<snip>

int err = kbase_jd_user_buf_pin_pages(kctx, reg);
<snip>

for (i = 0; i < pinned_pages; i++) {
dma_addr_t dma_addr;
unsigned long min;

min = MIN(PAGE_SIZE - offset, local_size);
dma_addr = dma_map_page(dev, pages[i],

offset, min, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_addr))

goto unwind;

alloc->imported.user_buf.dma_addrs[i] = dma_addr;
pa[i] = as_tagged(page_to_phys(pages[i]));

local_size -= min;
offset = 0;

}
<snip>
}

© 2021. Grayshift, LLC. All rights reserved.
12/7/2021

Fault the MMU
static vm_fault_t kbase_cpu_vm_fault(struct vm_fault *vmf)
{

struct vm_area_struct *vma = vmf->vma;
struct kbase_cpu_mapping *map = vma->vm_private_data;

<snip>
nents = map->alloc->nents;
pages = map->alloc->pages;

<snip>
fault_pgoff = map_start_pgoff + (vmf->pgoff - vma->vm_pgoff);

if (fault_pgoff >= nents)
goto exit;

<snip>
i = map_start_pgoff;
addr = (pgoff_t)(vma->vm_start >> PAGE_SHIFT);
mgm_dev = map->kctx->kbdev->mgm_dev;
while (i < nents && (addr < vma->vm_end >> PAGE_SHIFT)) {

ret = mgm_dev->ops.mgm_vmf_insert_pfn_prot(mgm_dev,
map->alloc->group_id, vma, addr << PAGE_SHIFT,
PFN_DOWN(as_phys_addr_t(pages[i])), vma->vm_page_prot);

i++; addr++;
}

}

© 2021. Grayshift, LLC. All rights reserved.

Primitive Userspace Calls

© 2021. Grayshift, LLC. All rights reserved.

Primitive
• Write to RO page caches
• What to write to?

• mmap anything in /system/lib[64]
• libc.so

• Process inject code into anything dynamically linked
• Not init

© 2021. Grayshift, LLC. All rights reserved.

Pivot ASM

• Hand assemble hooks and pivot code for libc

• Pivot ASM Steps
gettid(), create rwx memory allocation, open payload, read payload into memory, blr to payload

• Payload can be in memory loader to exec other elfs
• SELinux still enforcing, SECCOMP still filtering

© 2021. Grayshift, LLC. All rights reserved.

Further Attack Surfaces
• Pivot allows exec in vold, zygote, system_server
• Access to vold allows direct access to disk block devices
• Still need to contend with encryption

• Pivot allows further research to other DAC and MAC
accessible surfaces

• Ideally a kernel pivot with goal of disabling SELinux

© 2021. Grayshift, LLC. All rights reserved.

Demo: Galaxy S10, SM-G973F, Security Patch Level 2021-01-01, PDA: G973FXXU9EUA4

© 2021. Grayshift, LLC. All rights reserved.

Why does the Vulnerability Exist?
• Speculate:

• The mali code is complicated

• Large functions, copied code

• Large data structs

• Until recently, all the source files (hundreds) in the same directory

• Mali setup is not trivial

• Need to perform ioctls and mmap before interaction

• Lack of public system emulator

• GPU devs are not focused on security

© 2021. Grayshift, LLC. All rights reserved.

How Bug was Discovered?

• Speculation:

• Could have been discovered by matching the pattern from CVE-

2016-2067 from KGSL/Adreno driver to Mali

• Could have been discovered by pure auditing noticing the flags

deficiency

• Probably not fuzzing

© 2021. Grayshift, LLC. All rights reserved.

Why I Work at Grayshift

• Work from home

• Regular success stories from the field, close to the mission

• Work with highly skilled and experienced vulnerability researchers

• Rewards individual performance

• Access to tools, training, and education

© 2021. Grayshift, LLC. All rights reserved.

Questions? / Comments

© 2021. Grayshift, LLC. All rights reserved.

